Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Robustness of Deep Sensor Fusion Models (2006.13192v3)

Published 23 Jun 2020 in cs.CV

Abstract: We experimentally study the robustness of deep camera-LiDAR fusion architectures for 2D object detection in autonomous driving. First, we find that the fusion model is usually both more accurate, and more robust against single-source attacks than single-sensor deep neural networks. Furthermore, we show that without adversarial training, early fusion is more robust than late fusion, whereas the two perform similarly after adversarial training. However, we note that single-channel adversarial training of deep fusion is often detrimental even to robustness. Moreover, we observe cross-channel externalities, where single-channel adversarial training reduces robustness to attacks on the other channel. Additionally, we observe that the choice of adversarial model in adversarial training is critical: using attacks restricted to cars' bounding boxes is more effective in adversarial training and exhibits less significant cross-channel externalities. Finally, we find that joint-channel adversarial training helps mitigate many of the issues above, but does not significantly boost adversarial robustness.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Shaojie Wang (26 papers)
  2. Tong Wu (228 papers)
  3. Ayan Chakrabarti (42 papers)
  4. Yevgeniy Vorobeychik (124 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.