Papers
Topics
Authors
Recent
Search
2000 character limit reached

Diffusions interacting through a random matrix: universality via stochastic Taylor expansion

Published 23 Jun 2020 in math.PR | (2006.13167v2)

Abstract: Consider $(X_{i}(t))$ solving a system of $N$ stochastic differential equations interacting through a random matrix $\mathbf J = (J_{ij})$ with independent (not necessarily identically distributed) random coefficients. We show that the trajectories of averaged observables of $(X_i(t))$, initialized from some $\mu$ independent of $\mathbf J$, are universal, i.e., only depend on the choice of the distribution $\mathbf{J}$ through its first and second moments (assuming e.g., sub-exponential tails). We take a general combinatorial approach to proving universality for dynamical systems with random coefficients, combining a stochastic Taylor expansion with a moment matching-type argument. Concrete settings for which our results imply universality include aging in the spherical SK spin glass, and Langevin dynamics and gradient flows for symmetric and asymmetric Hopfield networks.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.