Papers
Topics
Authors
Recent
Search
2000 character limit reached

Optimal Network Slicing for Service-Oriented Networks with Flexible Routing and Guaranteed E2E Latency

Published 21 Jun 2020 in cs.NI, cs.IT, eess.SP, math.IT, and math.OC | (2006.13019v4)

Abstract: Network function virtualization is a promising technology to simultaneously support multiple services with diverse characteristics and requirements in the 5G and beyond networks. In particular, each service consists of a predetermined sequence of functions, called service function chain (SFC), running on a cloud environment. To make different service slices work properly in harmony, it is crucial to appropriately select the cloud nodes to deploy the functions in the SFC and flexibly route the flow of the services such that these functions are processed in the order defined in the corresponding SFC, the end-to-end (E2E) latency constraints of all services are guaranteed, and all cloud and communication resource budget constraints are respected. In this paper, we first propose a new mixed binary linear program (MBLP) formulation of the above network slicing problem that optimizes the system energy efficiency while jointly considers the E2E latency requirement, resource budget, flow routing, and functional instantiation. Then, we develop another MBLP formulation and show that the two formulations are equivalent in the sense that they share the same optimal solution. However, since the numbers of variables and constraints in the second problem formulation are significantly smaller than those in the first one, solving the second problem formulation is more computationally efficient especially when the dimension of the corresponding network is large. Numerical results demonstrate the advantage of the proposed formulations compared with the existing ones.

Citations (28)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.