Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Similarity Search with Tensor Core Units (2006.12608v1)

Published 22 Jun 2020 in cs.DS, cs.DC, and cs.IR

Abstract: Tensor Core Units (TCUs) are hardware accelerators developed for deep neural networks, which efficiently support the multiplication of two dense $\sqrt{m}\times \sqrt{m}$ matrices, where $m$ is a given hardware parameter. In this paper, we show that TCUs can speed up similarity search problems as well. We propose algorithms for the Johnson-Lindenstrauss dimensionality reduction and for similarity join that, by leveraging TCUs, achieve a $\sqrt{m}$ speedup up with respect to traditional approaches.

Citations (8)

Summary

We haven't generated a summary for this paper yet.