Papers
Topics
Authors
Recent
Search
2000 character limit reached

Similarity Search with Tensor Core Units

Published 22 Jun 2020 in cs.DS, cs.DC, and cs.IR | (2006.12608v1)

Abstract: Tensor Core Units (TCUs) are hardware accelerators developed for deep neural networks, which efficiently support the multiplication of two dense $\sqrt{m}\times \sqrt{m}$ matrices, where $m$ is a given hardware parameter. In this paper, we show that TCUs can speed up similarity search problems as well. We propose algorithms for the Johnson-Lindenstrauss dimensionality reduction and for similarity join that, by leveraging TCUs, achieve a $\sqrt{m}$ speedup up with respect to traditional approaches.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.