Papers
Topics
Authors
Recent
2000 character limit reached

Estimating Properties of Social Networks via Random Walk considering Private Nodes

Published 22 Jun 2020 in cs.SI | (2006.12196v2)

Abstract: Accurately analyzing graph properties of social networks is a challenging task because of access limitations to the graph data. To address this challenge, several algorithms to obtain unbiased estimates of properties from few samples via a random walk have been studied. However, existing algorithms do not consider private nodes who hide their neighbors in real social networks, leading to some practical problems. Here we design random walk-based algorithms to accurately estimate properties without any problems caused by private nodes. First, we design a random walk-based sampling algorithm that comprises the neighbor selection to obtain samples having the Markov property and the calculation of weights for each sample to correct the sampling bias. Further, for two graph property estimators, we propose the weighting methods to reduce not only the sampling bias but also estimation errors due to private nodes. The proposed algorithms improve the estimation accuracy of the existing algorithms by up to 92.6% on real-world datasets.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.