Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Better Performance and More Explainable Uncertainty for 3D Object Detection of Autonomous Vehicles (2006.12015v2)

Published 22 Jun 2020 in cs.CV, cs.LG, and cs.RO

Abstract: In this paper, we propose a novel form of the loss function to increase the performance of LiDAR-based 3d object detection and obtain more explainable and convincing uncertainty for the prediction. The loss function was designed using corner transformation and uncertainty modeling. With the new loss function, the performance of our method on the val split of KITTI dataset shows up to a 15% increase in terms of Average Precision (AP) comparing with the baseline using simple L1 Loss. In the study of the characteristics of predicted uncertainties, we find that generally more accurate prediction of the bounding box is usually accompanied by lower uncertainty. The distribution of corner uncertainties agrees on the distribution of the point cloud in the bounding box, which means the corner with denser observed points has lower uncertainty. Moreover, our method also learns the constraint from the cuboid geometry of the bounding box in uncertainty prediction. Finally, we propose an efficient Bayesian updating method to recover the uncertainty for the original parameters of the bounding boxes which can help to provide probabilistic results for the planning module.

Citations (24)

Summary

We haven't generated a summary for this paper yet.