Sound Event Localization and Detection Using Activity-Coupled Cartesian DOA Vector and RD3net
Abstract: Our systems submitted to the DCASE2020 task~3: Sound Event Localization and Detection (SELD) are described in this report. We consider two systems: a single-stage system that solve sound event localization~(SEL) and sound event detection~(SED) simultaneously, and a two-stage system that first handles the SED and SEL tasks individually and later combines those results. As the single-stage system, we propose a unified training framework that uses an activity-coupled Cartesian DOA vector~(ACCDOA) representation as a single target for both the SED and SEL tasks. To efficiently estimate sound event locations and activities, we further propose RD3Net, which incorporates recurrent and convolution layers with dense skip connections and dilation. To generalize the models, we apply three data augmentation techniques: equalized mixture data augmentation~(EMDA), rotation of first-order Ambisonic~(FOA) singals, and multichannel extension of SpecAugment. Our systems demonstrate a significant improvement over the baseline system.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.