Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Decoupling Shrinkage and Selection in Gaussian Linear Factor Analysis (2006.11908v5)

Published 21 Jun 2020 in stat.ME

Abstract: Factor Analysis is a popular method for modeling dependence in multivariate data. However, determining the number of factors and obtaining a sparse orientation of the loadings are still major challenges. In this paper, we propose a decision-theoretic approach that brings to light the relation between a sparse representation of the loadings and factor dimension. This relation is done through a summary from information contained in the multivariate posterior. To construct such summary, we introduce a three-step approach. In the first step, the model is fitted with a conservative factor dimension. In the second step, a series of sparse point-estimates, with a decreasing number of factors, is obtained by minimizing an expected predictive loss function. In step three, the degradation in utility in relation to the sparse loadings and factor dimensions is displayed in the posterior summary. The findings are illustrated with applications in classical data from the Factor Analysis literature. We used different prior choices and factor dimensions to demonstrate the flexibility of the proposed method.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.