Papers
Topics
Authors
Recent
2000 character limit reached

Adversarially Trained Multi-Singer Sequence-To-Sequence Singing Synthesizer

Published 18 Jun 2020 in eess.AS, cs.LG, and cs.SD | (2006.10317v1)

Abstract: This paper presents a high quality singing synthesizer that is able to model a voice with limited available recordings. Based on the sequence-to-sequence singing model, we design a multi-singer framework to leverage all the existing singing data of different singers. To attenuate the issue of musical score unbalance among singers, we incorporate an adversarial task of singer classification to make encoder output less singer dependent. Furthermore, we apply multiple random window discriminators (MRWDs) on the generated acoustic features to make the network be a GAN. Both objective and subjective evaluations indicate that the proposed synthesizer can generate higher quality singing voice than baseline (4.12 vs 3.53 in MOS). Especially, the articulation of high-pitched vowels is significantly enhanced.

Citations (25)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.