Adversarially Trained Multi-Singer Sequence-To-Sequence Singing Synthesizer
Abstract: This paper presents a high quality singing synthesizer that is able to model a voice with limited available recordings. Based on the sequence-to-sequence singing model, we design a multi-singer framework to leverage all the existing singing data of different singers. To attenuate the issue of musical score unbalance among singers, we incorporate an adversarial task of singer classification to make encoder output less singer dependent. Furthermore, we apply multiple random window discriminators (MRWDs) on the generated acoustic features to make the network be a GAN. Both objective and subjective evaluations indicate that the proposed synthesizer can generate higher quality singing voice than baseline (4.12 vs 3.53 in MOS). Especially, the articulation of high-pitched vowels is significantly enhanced.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.