Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Knowledge-Enhanced Recommendation Model with Attribute-Level Co-Attention (2006.10233v1)

Published 18 Jun 2020 in cs.IR and cs.LG

Abstract: Deep neural networks (DNNs) have been widely employed in recommender systems including incorporating attention mechanism for performance improvement. However, most of existing attention-based models only apply item-level attention on user side, restricting the further enhancement of recommendation performance. In this paper, we propose a knowledge-enhanced recommendation model ACAM, which incorporates item attributes distilled from knowledge graphs (KGs) as side information, and is built with a co-attention mechanism on attribute-level to achieve performance gains. Specifically, each user and item in ACAM are represented by a set of attribute embeddings at first. Then, user representations and item representations are augmented simultaneously through capturing the correlations between different attributes by a co-attention module. Our extensive experiments over two realistic datasets show that the user representations and item representations augmented by attribute-level co-attention gain ACAM's superiority over the state-of-the-art deep models.

Citations (10)

Summary

We haven't generated a summary for this paper yet.