Papers
Topics
Authors
Recent
Search
2000 character limit reached

Generating Fundus Fluorescence Angiography Images from Structure Fundus Images Using Generative Adversarial Networks

Published 18 Jun 2020 in eess.IV and cs.CV | (2006.10216v1)

Abstract: Fluorescein angiography can provide a map of retinal vascular structure and function, which is commonly used in ophthalmology diagnosis, however, this imaging modality may pose risks of harm to the patients. To help physicians reduce the potential risks of diagnosis, an image translation method is adopted. In this work, we proposed a conditional generative adversarial network(GAN) - based method to directly learn the mapping relationship between structure fundus images and fundus fluorescence angiography images. Moreover, local saliency maps, which define each pixel's importance, are used to define a novel saliency loss in the GAN cost function. This facilitates more accurate learning of small-vessel and fluorescein leakage features.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.