Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generating Fundus Fluorescence Angiography Images from Structure Fundus Images Using Generative Adversarial Networks (2006.10216v1)

Published 18 Jun 2020 in eess.IV and cs.CV

Abstract: Fluorescein angiography can provide a map of retinal vascular structure and function, which is commonly used in ophthalmology diagnosis, however, this imaging modality may pose risks of harm to the patients. To help physicians reduce the potential risks of diagnosis, an image translation method is adopted. In this work, we proposed a conditional generative adversarial network(GAN) - based method to directly learn the mapping relationship between structure fundus images and fundus fluorescence angiography images. Moreover, local saliency maps, which define each pixel's importance, are used to define a novel saliency loss in the GAN cost function. This facilitates more accurate learning of small-vessel and fluorescein leakage features.

Citations (12)

Summary

We haven't generated a summary for this paper yet.