Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 415 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Lieb-Robinson bounds imply locality of interactions (2006.10062v2)

Published 17 Jun 2020 in quant-ph, cond-mat.str-el, math-ph, and math.MP

Abstract: Discrete lattice models are a cornerstone of quantum many-body physics. They arise as effective descriptions of condensed matter systems and lattice-regularized quantum field theories. Lieb-Robinson bounds imply that if the degrees of freedom at each lattice site only interact locally with each other, correlations can only propagate with a finite group velocity through the lattice, similarly to a light cone in relativistic systems. Here we show that Lieb-Robinson bounds are equivalent to the locality of the interactions: a system with k-body interactions fulfills Lieb-Robinson bounds in exponential form if and only if the underlying interactions decay exponentially in space. In particular, our result already follows from the behavior of two-point correlation functions for single-site observables and generalizes to different decay behaviours as well as fermionic lattice models. As a side-result, we thus find that Lieb-Robinson bounds for single-site observables imply Lieb-Robinson bounds for bounded observables with arbitrary support.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.