Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FrostNet: Towards Quantization-Aware Network Architecture Search (2006.09679v4)

Published 17 Jun 2020 in cs.LG, cs.CV, and stat.ML

Abstract: INT8 quantization has become one of the standard techniques for deploying convolutional neural networks (CNNs) on edge devices to reduce the memory and computational resource usages. By analyzing quantized performances of existing mobile-target network architectures, we can raise an issue regarding the importance of network architecture for optimal INT8 quantization. In this paper, we present a new network architecture search (NAS) procedure to find a network that guarantees both full-precision (FLOAT32) and quantized (INT8) performances. We first propose critical but straightforward optimization method which enables quantization-aware training (QAT) : floating-point statistic assisting (StatAssist) and stochastic gradient boosting (GradBoost). By integrating the gradient-based NAS with StatAssist and GradBoost, we discovered a quantization-efficient network building block, Frost bottleneck. Furthermore, we used Frost bottleneck as the building block for hardware-aware NAS to obtain quantization-efficient networks, FrostNets, which show improved quantization performances compared to other mobile-target networks while maintaining competitive FLOAT32 performance. Our FrostNets achieve higher recognition accuracy than existing CNNs with comparable latency when quantized, due to higher latency reduction rate (average 65%).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Taehoon Kim (30 papers)
  2. YoungJoon Yoo (31 papers)
  3. Jihoon Yang (5 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.