Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Real-Time Regression with Dividing Local Gaussian Processes (2006.09446v2)

Published 16 Jun 2020 in cs.LG, cs.RO, and stat.ML

Abstract: The increased demand for online prediction and the growing availability of large data sets drives the need for computationally efficient models. While exact Gaussian process regression shows various favorable theoretical properties (uncertainty estimate, unlimited expressive power), the poor scaling with respect to the training set size prohibits its application in big data regimes in real-time. Therefore, this paper proposes dividing local Gaussian processes, which are a novel, computationally efficient modeling approach based on Gaussian process regression. Due to an iterative, data-driven division of the input space, they achieve a sublinear computational complexity in the total number of training points in practice, while providing excellent predictive distributions. A numerical evaluation on real-world data sets shows their advantages over other state-of-the-art methods in terms of accuracy as well as prediction and update speed.

Citations (11)

Summary

We haven't generated a summary for this paper yet.