Reflection Groups and Rigidity of Quadratic Poisson Algebras (2006.09280v3)
Abstract: In this paper, we study the invariant theory of quadratic Poisson algebras. Let G be a finite group of the graded Poisson automorphisms of a quadratic Poisson algebra A. When the Poisson bracket of A is skew-symmetric, a Poisson version of the Shephard-Todd-Chevalley theorem is proved stating that the fixed Poisson subring AG is skew-symmetric if and only if G is generated by reflections. For many other well-known families of quadratic Poisson algebras, we show that G contains limited or even no reflections. This kind of Poisson rigidity result ensures that the corresponding fixed Poisson subring AG is not isomorphic to A as Poisson algebras unless G is trivial.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.