Papers
Topics
Authors
Recent
2000 character limit reached

Foreground-Background Imbalance Problem in Deep Object Detectors: A Review

Published 16 Jun 2020 in cs.CV | (2006.09238v1)

Abstract: Recent years have witnessed the remarkable developments made by deep learning techniques for object detection, a fundamentally challenging problem of computer vision. Nevertheless, there are still difficulties in training accurate deep object detectors, one of which is owing to the foreground-background imbalance problem. In this paper, we survey the recent advances about the solutions to the imbalance problem. First, we analyze the characteristics of the imbalance problem in different kinds of deep detectors, including one-stage and two-stage ones. Second, we divide the existing solutions into two categories: sampling heuristics and non-sampling schemes, and review them in detail. Third, we experimentally compare the performance of some state-of-the-art solutions on the COCO benchmark. Promising directions for future work are also discussed.

Citations (23)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.