Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robot Perception enables Complex Navigation Behavior via Self-Supervised Learning (2006.08967v1)

Published 16 Jun 2020 in cs.RO and cs.LG

Abstract: Learning visuomotor control policies in robotic systems is a fundamental problem when aiming for long-term behavioral autonomy. Recent supervised-learning-based vision and motion perception systems, however, are often separately built with limited capabilities, while being restricted to few behavioral skills such as passive visual odometry (VO) or mobile robot visual localization. Here we propose an approach to unify those successful robot perception systems for active target-driven navigation tasks via reinforcement learning (RL). Our method temporally incorporates compact motion and visual perception data - directly obtained using self-supervision from a single image sequence - to enable complex goal-oriented navigation skills. We demonstrate our approach on two real-world driving dataset, KITTI and Oxford RobotCar, using the new interactive CityLearn framework. The results show that our method can accurately generalize to extreme environmental changes such as day to night cycles with up to an 80% success rate, compared to 30% for a vision-only navigation systems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Marvin Chancán (9 papers)
  2. Michael Milford (145 papers)

Summary

We haven't generated a summary for this paper yet.