Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the use of human reference data for evaluating automatic image descriptions (2006.08792v1)

Published 15 Jun 2020 in cs.CL, cs.CV, and cs.HC

Abstract: Automatic image description systems are commonly trained and evaluated using crowdsourced, human-generated image descriptions. The best-performing system is then determined using some measure of similarity to the reference data (BLEU, Meteor, CIDER, etc). Thus, both the quality of the systems as well as the quality of the evaluation depends on the quality of the descriptions. As Section 2 will show, the quality of current image description datasets is insufficient. I argue that there is a need for more detailed guidelines that take into account the needs of visually impaired users, but also the feasibility of generating suitable descriptions. With high-quality data, evaluation of image description systems could use reference descriptions, but we should also look for alternatives.

Citations (2)

Summary

We haven't generated a summary for this paper yet.