Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Machine-learning approach to identification of coronal holes in solar disk images and synoptic maps (2006.08529v2)

Published 15 Jun 2020 in astro-ph.SR

Abstract: Identification of solar coronal holes (CHs) provides information both for operational space weather forecasting and long-term investigation of solar activity. Source data for the first problem are typically most recent solar disk observations, while for the second problem it is convenient to consider solar synoptic maps. Motivated by the idea that the concept of CHs should be similar for both cases we investigate universal models that can learn a CHs segmentation in disk images and reproduce the same segmentation in synoptic maps. We demonstrate that Convolutional Neural Networks (CNN) trained on daily disk images provide an accurate CHs segmentation in synoptic maps and their pole-centric projections. Using this approach we construct a catalog of synoptic maps for the period of 2010-20 based on SDO/AIA observations in the 193 Angstrom wavelength. The obtained CHs synoptic maps are compared with magnetic synoptic maps in the time-latitude and time-longitude diagrams. The initial results demonstrate that while in some cases the CHs are associated with magnetic flux transport events there are other mechanisms contributing to the CHs formation and evolution. To stimulate further investigations the catalog of synoptic maps is published in open access.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.