Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Time-Varying Convex Optimization: Time-Structured Algorithms and Applications (2006.08500v1)

Published 15 Jun 2020 in math.OC, cs.SY, and eess.SY

Abstract: Optimization underpins many of the challenges that science and technology face on a daily basis. Recent years have witnessed a major shift from traditional optimization paradigms grounded on batch algorithms for medium-scale problems to challenging dynamic, time-varying, and even huge-size settings. This is driven by technological transformations that converted infrastructural and social platforms into complex and dynamic networked systems with even pervasive sensing and computing capabilities. The present paper reviews a broad class of state-of-the-art algorithms for time-varying optimization, with an eye to both algorithmic development and performance analysis. It offers a comprehensive overview of available tools and methods, and unveils open challenges in application domains of broad interest. The real-world examples presented include smart power systems, robotics, machine learning, and data analytics, highlighting domain-specific issues and solutions. The ultimate goal is to exempify wide engineering relevance of analytical tools and pertinent theoretical foundations.

Citations (121)

Summary

We haven't generated a summary for this paper yet.