Global Aspects of Doubled Geometry and Pre-rackoid (2006.08158v3)
Abstract: The integration problem of a C-bracket and a Vaisman (metric, pre-DFT) algebroid which are geometric structures of double field theory (DFT) is analyzed. We introduce a notion of a pre-rackoid as a global group-like object for an infinitesimal algebroid structure. We propose that several realizations of pre-rackoid structures. One realization is that elements of a pre-rackoid are defined by cotangent paths along doubled foliations in a para-Hermitian manifold. Another realization is proposed as a formal exponential map of the algebroid of DFT. We show that the pre-rackoid reduces to a rackoid that is the integration of the Courant algebroid when the strong constraint of DFT is imposed. Finally, for a physical application, we exhibit an implementation of the (pre-)rackoid in a three-dimensional topological sigma model.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.