Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solution Subset Selection for Final Decision Making in Evolutionary Multi-Objective Optimization (2006.08156v1)

Published 15 Jun 2020 in cs.NE and cs.AI

Abstract: In general, a multi-objective optimization problem does not have a single optimal solution but a set of Pareto optimal solutions, which forms the Pareto front in the objective space. Various evolutionary algorithms have been proposed to approximate the Pareto front using a pre-specified number of solutions. Hundreds of solutions are obtained by their single run. The selection of a single final solution from the obtained solutions is assumed to be done by a human decision maker. However, in many cases, the decision maker does not want to examine hundreds of solutions. Thus, it is needed to select a small subset of the obtained solutions. In this paper, we discuss subset selection from a viewpoint of the final decision making. First we briefly explain existing subset selection studies. Next we formulate an expected loss function for subset selection. We also show that the formulated function is the same as the IGD plus indicator. Then we report experimental results where the proposed approach is compared with other indicator-based subset selection methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Hisao Ishibuchi (45 papers)
  2. Lie Meng Pang (8 papers)
  3. Ke Shang (18 papers)
Citations (8)