Papers
Topics
Authors
Recent
2000 character limit reached

Learning from the Scene and Borrowing from the Rich: Tackling the Long Tail in Scene Graph Generation

Published 13 Jun 2020 in cs.CV, cs.LG, and eess.IV | (2006.07585v1)

Abstract: Despite the huge progress in scene graph generation in recent years, its long-tail distribution in object relationships remains a challenging and pestering issue. Existing methods largely rely on either external knowledge or statistical bias information to alleviate this problem. In this paper, we tackle this issue from another two aspects: (1) scene-object interaction aiming at learning specific knowledge from a scene via an additive attention mechanism; and (2) long-tail knowledge transfer which tries to transfer the rich knowledge learned from the head into the tail. Extensive experiments on the benchmark dataset Visual Genome on three tasks demonstrate that our method outperforms current state-of-the-art competitors.

Citations (28)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.