Learning from the Scene and Borrowing from the Rich: Tackling the Long Tail in Scene Graph Generation
Abstract: Despite the huge progress in scene graph generation in recent years, its long-tail distribution in object relationships remains a challenging and pestering issue. Existing methods largely rely on either external knowledge or statistical bias information to alleviate this problem. In this paper, we tackle this issue from another two aspects: (1) scene-object interaction aiming at learning specific knowledge from a scene via an additive attention mechanism; and (2) long-tail knowledge transfer which tries to transfer the rich knowledge learned from the head into the tail. Extensive experiments on the benchmark dataset Visual Genome on three tasks demonstrate that our method outperforms current state-of-the-art competitors.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.