Papers
Topics
Authors
Recent
Search
2000 character limit reached

Generalized SHAP: Generating multiple types of explanations in machine learning

Published 12 Jun 2020 in cs.LG and stat.ML | (2006.07155v2)

Abstract: Many important questions about a model cannot be answered just by explaining how much each feature contributes to its output. To answer a broader set of questions, we generalize a popular, mathematically well-grounded explanation technique, Shapley Additive Explanations (SHAP). Our new method - Generalized Shapley Additive Explanations (G-SHAP) - produces many additional types of explanations, including: 1) General classification explanations; Why is this sample more likely to belong to one class rather than another? 2) Intergroup differences; Why do our model's predictions differ between groups of observations? 3) Model failure; Why does our model perform poorly on a given sample? We formally define these types of explanations and illustrate their practical use on real data.

Citations (33)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.