Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attention improves concentration when learning node embeddings (2006.06834v1)

Published 11 Jun 2020 in cs.LG and stat.ML

Abstract: We consider the problem of predicting edges in a graph from node attributes in an e-commerce setting. Specifically, given nodes labelled with search query text, we want to predict links to related queries that share products. Experiments with a range of deep neural architectures show that simple feedforward networks with an attention mechanism perform best for learning embeddings. The simplicity of these models allows us to explain the performance of attention. We propose an analytically tractable model of query generation, AttEST, that views both products and the query text as vectors embedded in a latent space. We prove (and empirically validate) that the point-wise mutual information (PMI) matrix of the AttEST query text embeddings displays a low-rank behavior analogous to that observed in word embeddings. This low-rank property allows us to derive a loss function that maximizes the mutual information between related queries which is used to train an attention network to learn query embeddings. This AttEST network beats traditional memory-based LSTM architectures by over 20% on F-1 score. We justify this out-performance by showing that the weights from the attention mechanism correlate strongly with the weights of the best linear unbiased estimator (BLUE) for the product vectors, and conclude that attention plays an important role in variance reduction.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Matthew Dippel (1 paper)
  2. Adam Kiezun (1 paper)
  3. Tanay Mehta (1 paper)
  4. Ravi Sundaram (21 papers)
  5. Srikanth Thirumalai (1 paper)
  6. Akshar Varma (3 papers)

Summary

We haven't generated a summary for this paper yet.