Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Rank Broad and Narrow Queries in E-Commerce (1907.01549v2)

Published 1 Jul 2019 in cs.IR, cs.CL, cs.LG, and stat.ML

Abstract: Search is a prominent channel for discovering products on an e-commerce platform. Ranking products retrieved from search becomes crucial to address customer's need and optimize for business metrics. While learning to Rank (LETOR) models have been extensively studied and have demonstrated efficacy in the context of web search; it is a relatively new research area to be explored in the e-commerce. In this paper, we present a framework for building LETOR model for an e-commerce platform. We analyze user queries and propose a mechanism to segment queries between broad and narrow based on user's intent. We discuss different types of features - query, product and query-product and discuss challenges in using them. We show that sparsity in product features can be tackled through a denoising auto-encoder while skip-gram based word embeddings help solve the query-product sparsity issues. We also present various target metrics that can be employed for evaluating search results and compare their robustness. Further, we build and compare performances of both pointwise and pairwise LETOR models on fashion category data set. We also build and compare distinct models for broad and narrow queries, analyze feature importance across these and show that these specialized models perform better than a combined model in the fashion world.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Siddhartha Devapujula (1 paper)
  2. Sagar Arora (5 papers)
  3. Sumit Borar (6 papers)
Citations (1)