Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Agent Reinforcement Learning in Stochastic Networked Systems (2006.06555v3)

Published 11 Jun 2020 in cs.LG, cs.MA, and stat.ML

Abstract: We study multi-agent reinforcement learning (MARL) in a stochastic network of agents. The objective is to find localized policies that maximize the (discounted) global reward. In general, scalability is a challenge in this setting because the size of the global state/action space can be exponential in the number of agents. Scalable algorithms are only known in cases where dependencies are static, fixed and local, e.g., between neighbors in a fixed, time-invariant underlying graph. In this work, we propose a Scalable Actor Critic framework that applies in settings where the dependencies can be non-local and stochastic, and provide a finite-time error bound that shows how the convergence rate depends on the speed of information spread in the network. Additionally, as a byproduct of our analysis, we obtain novel finite-time convergence results for a general stochastic approximation scheme and for temporal difference learning with state aggregation, which apply beyond the setting of MARL in networked systems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yiheng Lin (50 papers)
  2. Guannan Qu (48 papers)
  3. Longbo Huang (89 papers)
  4. Adam Wierman (132 papers)
Citations (33)