Papers
Topics
Authors
Recent
Search
2000 character limit reached

Conditional probability and improper priors

Published 7 Jun 2020 in math.ST and stat.TH | (2006.04797v1)

Abstract: The purpose of this paper is to present a mathematical theory that can be used as a foundation for statistics that include improper priors. This theory includes improper laws in the initial axioms and has in particular Bayes theorem as a consequence. Another consequence is that some of the usual calculation rules are modified. This is important in relation to common statistical practice which usually include improper priors, but tends to use unaltered calculation rules. In some cases the results are valid, but in other cases inconsistencies may appear. The famous marginalization paradoxes exemplify this latter case. An alternative mathematical theory for the foundations of statistics can be formulated in terms of conditional probability spaces. In this case the appearance of improper laws is a consequence of the theory. It is proved here that the resulting mathematical structures for the two theories are equivalent. The conclusion is that the choice of the first or the second formulation for the initial axioms can be considered a matter of personal preference. Readers that initially have concerns regarding improper priors can possibly be more open toward a formulation of the initial axioms in terms of conditional probabilities. The interpretation of an improper law is given by the corresponding conditional probabilities. Keywords: Axioms of statistics, Conditional probability space, Improper prior, Projective space

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.