Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Serverless on FHIR: Deploying machine learning models for healthcare on the cloud (2006.04748v1)

Published 8 Jun 2020 in cs.CY, cs.LG, and q-bio.QM

Abstract: Machine Learning (ML) plays a vital role in implementing digital health. The advances in hardware and the democratization of software tools have revolutionized machine learning. However, the deployment of ML models -- the mathematical representation of the task to be performed -- for effective and efficient clinical decision support at the point of care is still a challenge. ML models undergo constant improvement of their accuracy and predictive power with a high turnover rate. Updating models consumed by downstream health information systems is essential for patient safety. We introduce a functional taxonomy and a four-tier architecture for cloud-based model deployment for digital health. The four tiers are containerized microservices for maintainability, serverless architecture for scalability, function as a service for portability and FHIR schema for discoverability. We call this architecture Serverless on FHIR and propose this as a standard to deploy digital health applications that can be consumed by downstream systems such as EMRs and visualization tools.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Bell Raj Eapen (3 papers)
  2. Kamran Sartipi (3 papers)
  3. Norm Archer (2 papers)
Citations (3)