Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Irreducibility of the Fermi variety for discrete periodic Schrödinger operators and embedded eigenvalues (2006.04733v3)

Published 8 Jun 2020 in math-ph, math.AG, math.MP, and math.SP

Abstract: Let $H_0$ be a discrete periodic Schr\"odinger operator on $\ell2(\mathbb{Z}d)$: $$H_0=-\Delta+V,$$ where $\Delta$ is the discrete Laplacian and $V: \mathbb{Z}d\to \mathbb{C}$ is periodic. We prove that for any $d\geq3$, the Fermi variety at every energy level is irreducible (modulo periodicity). For $d=2$, we prove that the Fermi variety at every energy level except for the average of the potential is irreducible (modulo periodicity) and the Fermi variety at the average of the potential has at most two irreducible components (modulo periodicity). This is sharp since for $d=2$ and a constant potential $V$, the Fermi variety at $V$-level has exactly two irreducible components (modulo periodicity). We also prove that the Bloch variety is irreducible (modulo periodicity) for any $d\geq 2$. As applications, we prove that when $V$ is a real-valued periodic function, the level set of any extrema of any spectral band functions, spectral band edges in particular, has dimension at most $d-2$ for any $d\geq 3$, and finite cardinality for $d=2$. We also show that $H=-\Delta +V+v$ does not have any embedded eigenvalues provided that $v$ decays super-exponentially.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube