Papers
Topics
Authors
Recent
2000 character limit reached

Ensemble Model with Batch Spectral Regularization and Data Blending for Cross-Domain Few-Shot Learning with Unlabeled Data (2006.04323v2)

Published 8 Jun 2020 in cs.CV

Abstract: In this paper, we present our proposed ensemble model with batch spectral regularization and data blending mechanisms for the Track 2 problem of the cross-domain few-shot learning (CD-FSL) challenge. We build a multi-branch ensemble framework by using diverse feature transformation matrices, while deploying batch spectral feature regularization on each branch to improve the model's transferability. Moreover, we propose a data blending method to exploit the unlabeled data and augment the sparse support set in the target domain. Our proposed model demonstrates effective performance on the CD-FSL benchmark tasks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.