Papers
Topics
Authors
Recent
Search
2000 character limit reached

Analogy as Nonparametric Bayesian Inference over Relational Systems

Published 7 Jun 2020 in cs.AI and cs.LG | (2006.04156v1)

Abstract: Much of human learning and inference can be framed within the computational problem of relational generalization. In this project, we propose a Bayesian model that generalizes relational knowledge to novel environments by analogically weighting predictions from previously encountered relational structures. First, we show that this learner outperforms a naive, theory-based learner on relational data derived from random- and Wikipedia-based systems when experience with the environment is small. Next, we show how our formalization of analogical similarity translates to the selection and weighting of analogies. Finally, we combine the analogy- and theory-based learners in a single nonparametric Bayesian model, and show that optimal relational generalization transitions from relying on analogies to building a theory of the novel system with increasing experience in it. Beyond predicting unobserved interactions better than either baseline, this formalization gives a computational-level perspective on the formation and abstraction of analogies themselves.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.