Papers
Topics
Authors
Recent
2000 character limit reached

Constructing rigid-foldable generalized Miura-ori tessellations for curved surfaces

Published 7 Jun 2020 in cs.CE | (2006.04070v2)

Abstract: Origami has shown the potential to approximate three-dimensional curved surfaces by folding through designed crease patterns on flat materials. The Miura-ori tessellation is a widely used pattern in engineering and tiles the plane when partially folded. Based on constrained optimization, this paper presents the construction of generalized Miura-ori patterns that can approximate three-dimensional parametric surfaces of varying curvatures while preserving the inherent properties of the standard Miura-ori, including developability, flat-foldability and rigid-foldability. An initial configuration is constructed by tiling the target surface with triangulated Miura-like unit cells and used as the initial guess for the optimization. For approximation of a single target surface, a portion of the vertexes on the one side is attached to the target surface; for fitting of two target surfaces, a portion of vertexes on the other side is also attached to the second target surface. The parametric coordinates are adopted as the unknown variables for the vertexes on the target surfaces whilst the Cartesian coordinates are the unknowns for the other vertexes. The constructed generalized Miura-ori tessellations can be rigidly folded from the flat state to the target state with a single degree of freedom.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.