Papers
Topics
Authors
Recent
Search
2000 character limit reached

Runtime Analysis of a Heavy-Tailed $(1+(λ,λ))$ Genetic Algorithm on Jump Functions

Published 5 Jun 2020 in cs.NE | (2006.03523v1)

Abstract: It was recently observed that the $(1+(\lambda,\lambda))$ genetic algorithm can comparably easily escape the local optimum of the jump functions benchmark. Consequently, this algorithm can optimize the jump function with jump size $k$ in an expected runtime of only $n{(k + 1)/2}k{-k/2}e{O(k)}$ fitness evaluations (Antipov, Doerr, Karavaev (GECCO 2020)). To obtain this performance, however, a non-standard parameter setting depending on the jump size $k$ was used. To overcome this difficulty, we propose to choose two parameters of the $(1+(\lambda,\lambda))$ genetic algorithm randomly from a power-law distribution. Via a mathematical runtime analysis, we show that this algorithm with natural instance-independent choices of the distribution parameters on all jump functions with jump size at most $n/4$ has a performance close to what the best instance-specific parameters in the previous work obtained. This price for instance-independence can be made as small as an $O(n\log(n))$ factor. Given the difficulty of the jump problem and the runtime losses from using mildly suboptimal fixed parameters (also discussed in this work), this appears to be a fair price.

Citations (36)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.