Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Enumeration of standard barely set-valued tableaux of shifted shapes (2006.03253v2)

Published 5 Jun 2020 in math.CO

Abstract: A standard barely set-valued tableau of shape $\lambda$ is a filling of the Young diagram $\lambda$ with integers $1,2,\dots,|\lambda|+1$ such that the integers are increasing in each row and column, and every cell contains one integer except one cell that contains two integers. Counting standard barely set-valued tableaux is closely related to the coincidental down-degree expectations (CDE) of lower intervals in Young's lattice. Using $q$-integral techniques we give a formula for the number of standard barely set-valued tableaux of arbitrary shifted shape. We show how it can be used to recover two formulas, originally conjectured by Reiner, Tenner and Yong, and proved by Hopkins, for numbers of standard barely set valued tableaux of particular shifted-balanced shapes. We also prove a conjecture of Reiner, Tenner and Yong on the CDE property of the shifted shape $(n,n-2,n-4,\dots,n-2k+2)$. Finally, in the Appendix we raise a conjecture on an $\mathsf a;q$-analogue of the down-degree expectation with respect to the uniform distribution for a specific class of lower order ideals of Young's lattice.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.