Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Asymptotic behavior of a network of neurons with random linear interactions (2006.03083v1)

Published 4 Jun 2020 in math.PR

Abstract: We study the asymptotic behavior for asymmetric neuronal dynamics in a network of linear Hopfield neurons. The interaction between the neurons is modeled by random couplings which are centered i.i.d. random variables with finite moments of all orders. We prove that if the initial condition of the network is a set of i.i.d. random variables and independent of the synaptic weights, each component of the limit system is described as the sum of the corresponding coordinate of the initial condition with a centered Gaussian process whose covariance function can be described in terms of a modified Bessel function. This process is not Markovian. The convergence is in law almost surely with respect to the random weights. Our method is essentially based on the method of moments to obtain a Central Limit Theorem.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.