Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

The Grassmannian VOA (2006.02422v1)

Published 3 Jun 2020 in hep-th, math-ph, math.MP, and math.QA

Abstract: We study the 3-parametric family of vertex operator algebras based on the unitary Grassmannian coset CFT $\mathfrak{u}(M+N)k/(\mathfrak{u}(M)_k \times \mathfrak{u}(N)_k)$. This VOA serves as a basic building block for a large class of cosets and generalizes the $\mathcal{W}\infty$ algebra. We analyze representations and their characters in detail and find surprisingly simple character formulas for the representations in the generic parameter regime that admit an elegant combinatorial formulation. We also discuss truncations of the algebra and give a conjectural formula for the complete set of truncation curves. We develop a theory of gluing for these algebras in order to build more complicated coset and non-coset algebras. We demonstrate the power of this technology with some examples and show in particular that the $\mathcal{N}=2$ supersymmetric Grassmannian can be obtained by gluing three bosonic Grassmannian algebras in a loop. We finally speculate about the tantalizing possibility that this algebra is a specialization of an even larger 4-parametric family of algebras exhibiting pentality symmetry. Specialization of this conjectural family should include both the unitary Grassmannian family as well as the Lagrangian Grassmannian family of VOAs which interpolates between the unitary and the orthosymplectic cosets.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.