Papers
Topics
Authors
Recent
2000 character limit reached

The role of exchangeability in causal inference

Published 2 Jun 2020 in stat.ME, math.ST, and stat.TH | (2006.01799v5)

Abstract: Though the notion of exchangeability has been discussed in the causal inference literature under various guises, it has rarely taken its original meaning as a symmetry property of probability distributions. As this property is a standard component of Bayesian inference, we argue that in Bayesian causal inference it is natural to link the causal model, including the notion of confounding and definition of causal contrasts of interest, to the concept of exchangeability. Here we propose a probabilistic between-group exchangeability property as an identifying condition for causal effects, relate it to alternative conditions for unconfounded inferences (commonly stated using potential outcomes) and define causal contrasts in the presence of exchangeability in terms of posterior predictive expectations for further exchangeable units. While our main focus is on a point treatment setting, we also investigate how this reasoning carries over to longitudinal settings.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.