Papers
Topics
Authors
Recent
2000 character limit reached

Analyzing the Quality and Stability of a Streaming End-to-End On-Device Speech Recognizer

Published 2 Jun 2020 in cs.CL, cs.SD, and eess.AS | (2006.01416v2)

Abstract: The demand for fast and accurate incremental speech recognition increases as the applications of automatic speech recognition (ASR) proliferate. Incremental speech recognizers output chunks of partially recognized words while the user is still talking. Partial results can be revised before the ASR finalizes its hypothesis, causing instability issues. We analyze the quality and stability of on-device streaming end-to-end (E2E) ASR models. We first introduce a novel set of metrics that quantify the instability at word and segment levels. We study the impact of several model training techniques that improve E2E model qualities but degrade model stability. We categorize the causes of instability and explore various solutions to mitigate them in a streaming E2E ASR system. Index Terms: ASR, stability, end-to-end, text normalization,on-device, RNN-T

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.