2000 character limit reached
Sampling Techniques in Bayesian Target Encoding
Published 1 Jun 2020 in cs.LG, cs.DM, and stat.ML | (2006.01317v2)
Abstract: Target encoding is an effective encoding technique of categorical variables and is often used in machine learning systems for processing tabular data sets with mixed numeric and categorical variables. Recently en enhanced version of this encoding technique was proposed by using conjugate Bayesian modeling. This paper presents a further development of Bayesian encoding method by using sampling techniques, which helps in extracting information from intra-category distribution of the target variable, improves generalization and reduces target leakage.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.