Papers
Topics
Authors
Recent
2000 character limit reached

Improving EEG based continuous speech recognition using GAN

Published 29 May 2020 in eess.AS, cs.LG, and cs.SD | (2006.01260v1)

Abstract: In this paper we demonstrate that it is possible to generate more meaningful electroencephalography (EEG) features from raw EEG features using generative adversarial networks (GAN) to improve the performance of EEG based continuous speech recognition systems. We improve the results demonstrated by authors in [1] using their data sets for for some of the test time experiments and for other cases our results were comparable with theirs. Our proposed approach can be implemented without using any additional sensor information, whereas in [1] authors used additional features like acoustic or articulatory information to improve the performance of EEG based continuous speech recognition systems.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.