Papers
Topics
Authors
Recent
2000 character limit reached

Lexical Normalization for Code-switched Data and its Effect on POS-tagging

Published 1 Jun 2020 in cs.CL | (2006.01175v2)

Abstract: Lexical normalization, the translation of non-canonical data to standard language, has shown to improve the performance of manynatural language processing tasks on social media. Yet, using multiple languages in one utterance, also called code-switching (CS), is frequently overlooked by these normalization systems, despite its common use in social media. In this paper, we propose three normalization models specifically designed to handle code-switched data which we evaluate for two language pairs: Indonesian-English (Id-En) and Turkish-German (Tr-De). For the latter, we introduce novel normalization layers and their corresponding language ID and POS tags for the dataset, and evaluate the downstream effect of normalization on POS tagging. Results show that our CS-tailored normalization models outperform Id-En state of the art and Tr-De monolingual models, and lead to 5.4% relative performance increase for POS tagging as compared to unnormalized input.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.