Papers
Topics
Authors
Recent
2000 character limit reached

In the Eye of the Beholder: Gaze and Actions in First Person Video

Published 31 May 2020 in cs.CV | (2006.00626v2)

Abstract: We address the task of jointly determining what a person is doing and where they are looking based on the analysis of video captured by a headworn camera. To facilitate our research, we first introduce the EGTEA Gaze+ dataset. Our dataset comes with videos, gaze tracking data, hand masks and action annotations, thereby providing the most comprehensive benchmark for First Person Vision (FPV). Moving beyond the dataset, we propose a novel deep model for joint gaze estimation and action recognition in FPV. Our method describes the participant's gaze as a probabilistic variable and models its distribution using stochastic units in a deep network. We further sample from these stochastic units, generating an attention map to guide the aggregation of visual features for action recognition. Our method is evaluated on our EGTEA Gaze+ dataset and achieves a performance level that exceeds the state-of-the-art by a significant margin. More importantly, we demonstrate that our model can be applied to larger scale FPV dataset---EPIC-Kitchens even without using gaze, offering new state-of-the-art results on FPV action recognition.

Citations (62)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.