Papers
Topics
Authors
Recent
2000 character limit reached

Two-stage short-term wind power forecasting algorithm using different feature-learning models

Published 31 May 2020 in eess.SP and cs.LG | (2006.00413v3)

Abstract: Two-stage ensemble-based forecasting methods have been studied extensively in the wind power forecasting field. However, deep learning-based wind power forecasting studies have not investigated two aspects. In the first stage, different learning structures considering multiple inputs and multiple outputs have not been discussed. In the second stage, the model extrapolation issue has not been investigated. Therefore, we develop four deep neural networks for the first stage to learn data features considering the input-and-output structure. We then explore the model extrapolation issue in the second stage using different modeling methods. Considering the overfitting issue, we propose a new moving window-based algorithm using a validation set in the first stage to update the training data in both stages with two different moving window processes.Experiments were conducted at three wind farms, and the results demonstrate that the model with single input multiple output structure obtains better forecasting accuracy compared to existing models. In addition, the ridge regression method results in a better ensemble model that can further improve forecasting accuracy compared to existing machine learning methods. Finally, the proposed two-stage forecasting algorithm can generate more accurate and stable results than existing algorithms.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.