Papers
Topics
Authors
Recent
2000 character limit reached

Exploring Filterbank Learning for Keyword Spotting

Published 30 May 2020 in eess.AS, cs.LG, and cs.SD | (2006.00217v1)

Abstract: Despite their great performance over the years, handcrafted speech features are not necessarily optimal for any particular speech application. Consequently, with greater or lesser success, optimal filterbank learning has been studied for different speech processing tasks. In this paper, we fill in a gap by exploring filterbank learning for keyword spotting (KWS). Two approaches are examined: filterbank matrix learning in the power spectral domain and parameter learning of a psychoacoustically-motivated gammachirp filterbank. Filterbank parameters are optimized jointly with a modern deep residual neural network-based KWS back-end. Our experimental results reveal that, in general, there are no statistically significant differences, in terms of KWS accuracy, between using a learned filterbank and handcrafted speech features. Thus, while we conclude that the latter are still a wise choice when using modern KWS back-ends, we also hypothesize that this could be a symptom of information redundancy, which opens up new research possibilities in the field of small-footprint KWS.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.