Sim2Real for Peg-Hole Insertion with Eye-in-Hand Camera
Abstract: Even though the peg-hole insertion is one of the well-studied problems in robotics, it still remains a challenge for robots, especially when it comes to flexibility and the ability to generalize. Successful completion of the task requires combining several modalities to cope with the complexity of the real world. In our work, we focus on the visual aspect of the problem and employ the strategy of learning an insertion task in a simulator. We use Deep Reinforcement Learning to learn the policy end-to-end and then transfer the learned model to the real robot, without any additional fine-tuning. We show that the transferred policy, which only takes RGB-D and joint information (proprioception) can perform well on the real robot.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.