Papers
Topics
Authors
Recent
2000 character limit reached

Active Brownian particle in harmonic trap: exact computation of moments, and re-entrant transition

Published 28 May 2020 in cond-mat.stat-mech, cond-mat.soft, and physics.bio-ph | (2005.14234v2)

Abstract: We consider an active Brownian particle in a $d$-dimensional harmonic trap, in the presence of translational diffusion. While the Fokker-Planck equation can not in general be solved to obtain a closed form solution of the joint distribution of positions and orientations, as we show, it can be utilized to evaluate the exact time dependence of all moments, using a Laplace transform approach. We present explicit calculation of several such moments at arbitrary times and their evolution to the steady state. In particular we compute the kurtosis of the displacement, a quantity which clearly shows the difference of the active steady state properties from the equilibrium Gaussian form. We find that it increases with activity to asymptotic saturation, but varies non-monotonically with the trap-stiffness, thereby capturing a recently observed active- to- passive re-entrant behavior.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.