Papers
Topics
Authors
Recent
2000 character limit reached

Variational regularisation for inverse problems with imperfect forward operators and general noise models

Published 28 May 2020 in math.NA, cs.NA, and math.OC | (2005.14131v4)

Abstract: We study variational regularisation methods for inverse problems with imperfect forward operators whose errors can be modelled by order intervals in a partial order of a Banach lattice. We carry out analysis with respect to existence and convex duality for general data fidelity terms and regularisation functionals. Both for a-priori and a-posteriori parameter choice rules, we obtain convergence rates of the regularized solutions in terms of Bregman distances. Our results apply to fidelity terms such as Wasserstein distances, f-divergences, norms, as well as sums and infimal convolutions of those.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.