Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint Stochastic Approximation and Its Application to Learning Discrete Latent Variable Models (2005.14001v1)

Published 28 May 2020 in stat.ML and cs.LG

Abstract: Although with progress in introducing auxiliary amortized inference models, learning discrete latent variable models is still challenging. In this paper, we show that the annoying difficulty of obtaining reliable stochastic gradients for the inference model and the drawback of indirectly optimizing the target log-likelihood can be gracefully addressed in a new method based on stochastic approximation (SA) theory of the Robbins-Monro type. Specifically, we propose to directly maximize the target log-likelihood and simultaneously minimize the inclusive divergence between the posterior and the inference model. The resulting learning algorithm is called joint SA (JSA). To the best of our knowledge, JSA represents the first method that couples an SA version of the EM (expectation-maximization) algorithm (SAEM) with an adaptive MCMC procedure. Experiments on several benchmark generative modeling and structured prediction tasks show that JSA consistently outperforms recent competitive algorithms, with faster convergence, better final likelihoods, and lower variance of gradient estimates.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Zhijian Ou (58 papers)
  2. Yunfu Song (4 papers)
Citations (8)