Papers
Topics
Authors
Recent
2000 character limit reached

Kernel methods library for pattern analysis and machine learning in python

Published 27 May 2020 in cs.LG, cs.CV, stat.CO, and stat.ML | (2005.13483v1)

Abstract: Kernel methods have proven to be powerful techniques for pattern analysis and ML in a variety of domains. However, many of their original or advanced implementations remain in Matlab. With the incredible rise and adoption of Python in the ML and data science world, there is a clear need for a well-defined library that enables not only the use of popular kernels, but also allows easy definition of customized kernels to fine-tune them for diverse applications. The kernelmethods library fills that important void in the python ML ecosystem in a domain-agnostic fashion, allowing the sample data type to be anything from numerical, categorical, graphs or a combination of them. In addition, this library provides a number of well-defined classes to make various kernel-based operations efficient (for large scale datasets), modular (for ease of domain adaptation), and inter-operable (across different ecosystems). The library is available at https://github.com/raamana/kernelmethods.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.